SYNTHESIS OF THE TERPENOID ANTIBIOTIC LL-Z12710

M. Adinolfi, L. Mangoni, G. Barone and G. Laonigro

Institute of Organic Chemistry, University of Naples (Italy)

(Received in UK 10 January 1972; accepted for publication 19 January 1972)

The structural elucidation of the terpenoid antibiotic I, labelled LL-Z1271 α , which has been isolated together with a minor amount of the related lactol II from the fermentation products of an Acrostalagmus species, has been recently reported 1

This report deals with the synthesis of I from the (+)ketolactone IV, easily available by degradation of marrubiin $^{2-5}$

Bromination of IV in glacial AcOH (with traces amount of HBr) gave the bromoketone V (95%), * m.p. 149-150°, $[\alpha]_D$ +35.9°, λ_{max}^{EtOH} 310 nm (ϵ 80.3), which by treatment with 1,5-diazabicyclo[4.3.0]-5-nonene smoothly gave the unsaturated ketone VI (90%), m.p. 96.5°, $[\alpha]_D$ -5.23°, λ_{max}^{EtOH} 228 nm (ϵ 6400).

Reaction of VI with lithium ethoxy-acetylide in THF afforded an ethynyl carbinol (90%), m.p. 150-151°, [σ]_D-219.6° to which we assigned structure VII as we can safely assume the attack from σ -side to be the preferred one 5 .

The conjugate system present in I was easily made by very brief treatment of VII with conc $\rm H_2SO_4$ in 95° EtOH . The reaction gave the conjugated ester VIII (65%), m.p. 116-118°, $\left[\sigma\right]_{D}$ -307°, λ_{max}^{EtOH} 254 nm (\$\epsilon\$ 6300), besides a minor amount of the hydroxy ester IX⁷ (28%), m.p. 92.5-93°, $\left[\sigma\right]_{D}$ -94.8°.

The oxidation of VIII with SeO $_2$ (2.5 moles) in glacial AcOH afforded i) a lactol (the major product) m.p. 241-245°, $\lceil \alpha \rceil_D$ -255.6°, λ_{max}^{EtOH} 257 nm (ϵ 15000) [lit. 1 m.p. 241-247°, $\lceil \alpha \rceil_D$ -256°, λ_{max}^{EtOH} 257 nm (ϵ 15400)], which has NMR and IR spectra identical to those reported for natural II 1 , too; ii) the lactone X, m.p. 191-193°, $\lceil \alpha \rceil_D$ -323°, λ_{max}^{EtOH} 261 nm (ϵ 8750); iii) an

^{*} Satisfactory analyses were obtained for all compounds reported . M.p.'s were determined on a Kofler block and are uncorrected . Specific rotations were determined in chloroform solutions at room temperature .

acetate, m.p. 220-222°, $[\alpha]_D$ -213°, λ_{max}^{MeOH} 258 nm (ϵ 12800). Analysis of the NMR spectrum of this latter showed it to be XI, the C_{14} -epimer of the described III 1 . The C_{14} proton resonance, that occurs at δ 6.91 as a singlet * due to the very small allylic $J_{7,14}$ value 8 , conclusively shows it to be pseudo-equatorial (α -oriented) **.

The formation of XI requires the existence of an equilibrium between II and its C_{14} -epimer XII and, in addition, the preferential acetylation of this latter. However owing to the lacking of the C_{9} and C_{12} syn-diaxial hydrogens in the lactol XII, the observed esterification of the epimer bearing the pseudo-axial 14-0H is not surprising.

The acetylation of II with pyridine/Ac $_2$ 0 gave a 1:2 mixture of XI and of the known III . Fractional crystallization easily gave pure III, m.p. 205-206°, $\left[\sigma\right]_D$ -136°, $\lambda_{\text{max}}^{\text{MeOH}}$ 257 nm (ϵ 14000) [lit. 1 m.p. 205-210°, $\left[\sigma\right]_D$ -145°, $\lambda_{\text{max}}^{\text{MeOH}}$ 257 nm (ϵ 14000)], NMR and IR spectra identical to those reported 1.

Treatment of XI, III or of their 1:2 mixture with HCl/MeOH almost quantitatively gave a 3:1 mixture of two epimeric methyl derivatives that were separated by PLC.

The major product was XIII, m.p. 153-155°, $[\sigma]_D$ -250.6°, λ_{max}^{MeOH} 259 nm (ϵ 10000), NMR: δ 1.18 (3H,s), 1.32 (3H,s), 1.92 (1H,d,J=4,5 c/s), 3.53 (3H,s), 5.00 (1H,t), 5.54 (1H,s), 5.73 (1H,d,J=1,8 c/s), 6.34 (1H, double d), which clearly is the C_{14} -epimer of the minor product I, m.p. 215-217°, $[\sigma]_D$ -201°, λ_{max}^{MeOH} 257 nm (ϵ 13100) [lit. 1 m.p. 214-215°, $[\sigma]_D$ -203°, λ_{max}^{MeOH} 257 nm (ϵ 13500)], NMR and IR identical with those of the natural product .

As $(\frac{1}{2})$ ketolactone IV has been recently 11 synthetized, this work constitutes a total synthesis of the title compound.

Acknowledgement. - This work was supported in part by C.N.R.

^{*} In the NMR spectrum of the natural epimer III the C $_{14}$ pseudo-axial proton appears at δ 7.02 as a triplet with $J_{7,14}$ $^{\circ}$ 2,0 c/s 1 .

** The C-CO-O-C grouping in X and III is assumed to be planar 9,10 .

XI R=Ac XII R≈H XIII R=CH₃

REFERENCES

- G.A. Ellestad, R.H. Evans, M.P. Kunstmann, J.E. Lancaster and G.O. Morton, J. Amer. Chem. Soc., 92, 5483 (1970).
- 2. W. Cocker, B.E. Gross, S.R. Ruff, J.T. Edwards and T.F. Holley, \underline{J} . Chem. Soc., 2540 (1953).
- 3. D.G. Hardy, W. Rigby and D.P. Moody, Ibid., 2955 (1957).
- 4. D. Burn and W. Rigby, Ibid., 2964 (1957).
- 5. L. Mangoni and M. Adinolfi, Gazz. Chim. Ital., 98, 122 (1968).
- 6. L.F. Fieser and M. Fieser in "Reagents for Organic Chemistry", J.Wiley and Sons 1967, p.189.
- 7. G.L. Hekkert and W. Drenth, Rec. Trav. Chim., 80, 1285 (1961).
- 8. N.S. Bhacca and D.H. Williams in "Applications of NMR Spectroscopy in Organic Chemistry ", Holden-Day Inc, 1964, p. 108.
- 9. G. Snatzke, Angew. Chem. internat. Ed., 7, 14 (1968).
- 10. D. McL. Mathieson and J.C. Taylor, Tetrahedron Letters, 590 (1961).
- 11. L. Mangoni, M. Adinolfi, G. Laonigro and R. Caputo, Tetrahedron, in press.